Identifying Bots in Social Networks Using the Example of LiveJournal
https://doi.org/10.26794/2220-6469-2020-14-2-44-50
Abstract
Social networks have firmly entered the lives of billions of global Internet users worldwide. They communicate in social networks, play online games, make purchases, organise online events — exchange content from all walks of life [1, 2]. The most popular and well-known services in Russia are Vkontakte (vk.com), Youtube.com, Facebook.com, Odnoklassniki (Ok.ru), etc. The interfaces of such platforms allo — fake accounts. In this paper, we propose an approach to detect bots using the LiveJournal social network as an example. For this, we investigated the characteristics of the user’s egograph and performed a comparative analysis of the results of the classification algorithms.
About the Authors
A. A. KochkarovRussian Federation
Azret A. Kochkarov — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Data Analysis, Decision Making and Financial Technologies
Moscow
N. V. Kalashnikov
Russian Federation
Nikita V. Kalashnikov — Postgraduate student,
Moscow
R. A. Kochkarov
Russian Federation
Rasul A. Kochkarov — Cand. Sci. (Econ.), Associate Professor, Department of Data Analysis, Decision Making and Financial Technologies
Moscow
References
1. Scott J. Social Network Analysis: A Handbook. London: SAGE Publications Ltd; 2000. 224 p.
2. Fortunato S., Castellano C. Encyclopedia of Complexity and Systems Science. Springer Rough Sets in DecisionMaking. 2009; 7753–7786.
3. Chesnokov V. O., Klyucharyov P. G. Modern methods of highlighting communities in social networks. Nauka i Obrazovaniye: Nauchnoye izdaniye. 2017;(4):137–152. (In Russ.).
4. Dunbar R. I.M. Neocortex size as a constraint on group size in primates. Journal of Human Evolution. 1992;22(6):469–493.
5. Kalashnikov N. V., Analysis of social graphs of Facebook users. Sovremennaya matematika i kontseptsii innovatsionnogo matematicheskogo obrazovaniya. 2018;5(1):408–413. (In Russ.).
6. Perepelitsa V. A., Kochkarov A. M., Sergienko I. V. Recognition of fractal graphs. Cybernetics and Systems Analysis. 1999;35(4):572–585.
7. Kochkarov A. A., Kochkarov A. M., Salpagarova L. U. Modeling the destruction of complex network systems: graph-theoretic approach. Izvestiya YUFU. Tekhnicheskiye nauki. 2009;5(94):234–40. (In Russ.).
8. Kochkarov A. A., Kochkarov R. A., Malinetskiy G. G. Some aspects of dynamic graph theory. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki. 2015;55(9):1623–1629. (In Russ.).
9. Kochkarov A. A., Kochkarov R. A. Parallel algorithm for finding the shortest path on a pre-fractal graph. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki. 2004;44(6):1157–1162. (In Russ.).
10. Kochkarov R. A. Multi-weighted prefractal graphs with non-deterministic weights. Applications in economics, astrophysics and network communications. Moscow: Lenand; 2017. (In Russ.).
11. Kochkarov A. A., Salpagarov S. I., Kochkarov R. A. On quantitative estimates of the topological characteristics of prefractal graphs. Izvestiya TRTU. 2004;8(43):298–301. (In Russ.).
12. Bikkuzina A. I., Zhukov A. O., Nikolsky Yu.V., Bukhanets D. I. An approach to solving the problem of ordering alternatives in the dialogue system for modeling decision-making with information and analytical support for assessing and predicting the ecological state of the territories of operation of large technical complexes. Novyye issledovaniya v razrabotke tekhniki i tekhnologiy. 2014;(1):33–39. (In Russ.).
13. Gladyshev A. I., Zhukov A. O. Use in an automated control system of authority of biometric identification. Vestnik Rossiyskogo novogo universiteta. Seriya: Slozhnyye sistemy: modeli, analiz i upravleniye. 2013;(4):95–98. (In Russ.).
Review
For citations:
Kochkarov A.A., Kalashnikov N.V., Kochkarov R.A. Identifying Bots in Social Networks Using the Example of LiveJournal. The world of new economy. 2020;14(2):44-50. (In Russ.) https://doi.org/10.26794/2220-6469-2020-14-2-44-50